Piecewise Analytic Method VS Runge-Kutta Method (Comparative Study)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-Kutta-Chebyshev projection method

In this paper a fully explicit, stabilized projection method called the Runge-Kutta-Chebyshev (RKC) Projection method is presented for the solution of incompressible Navier-Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Runge – Kutta – Chebyshev projection method q

In this paper a fully explicit, stabilized projection method called the Runge–Kutta–Chebyshev (RKC) projection method is presented for the solution of incompressible Navier–Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...

متن کامل

A quasi-randomized Runge-Kutta method

We analyze a quasi-Monte Carlo method to solve the initial-value problem for a system of differential equations y′(t) = f(t, y(t)). The function f is smooth in y and we suppose that f and D1 yf are of bounded variation in t and that D2 yf is bounded in a neighborhood of the graph of the solution. The method is akin to the second order Heun method of the Runge-Kutta family. It uses a quasi-Monte...

متن کامل

numerical solution of fuzzy differential equation by runge-kutta method

in this paper, the numerical algorithms for solving ‘fuzzy ordinary differential equations’ are considered. a scheme based on the 4th order runge-kutta method is discussed in detail and it is followed by a complete error analysis. the algorithm is illustrated by solving some linear and nonlinear fuzzy cauchy problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Applied Mathematical Research

سال: 2020

ISSN: 2227-4324

DOI: 10.14419/ijamr.v9i2.31118