Piecewise Analytic Method VS Runge-Kutta Method (Comparative Study)
نویسندگان
چکیده
منابع مشابه
Runge-Kutta-Chebyshev projection method
In this paper a fully explicit, stabilized projection method called the Runge-Kutta-Chebyshev (RKC) Projection method is presented for the solution of incompressible Navier-Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملRunge – Kutta – Chebyshev projection method q
In this paper a fully explicit, stabilized projection method called the Runge–Kutta–Chebyshev (RKC) projection method is presented for the solution of incompressible Navier–Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...
متن کاملA quasi-randomized Runge-Kutta method
We analyze a quasi-Monte Carlo method to solve the initial-value problem for a system of differential equations y′(t) = f(t, y(t)). The function f is smooth in y and we suppose that f and D1 yf are of bounded variation in t and that D2 yf is bounded in a neighborhood of the graph of the solution. The method is akin to the second order Heun method of the Runge-Kutta family. It uses a quasi-Monte...
متن کاملnumerical solution of fuzzy differential equation by runge-kutta method
in this paper, the numerical algorithms for solving ‘fuzzy ordinary differential equations’ are considered. a scheme based on the 4th order runge-kutta method is discussed in detail and it is followed by a complete error analysis. the algorithm is illustrated by solving some linear and nonlinear fuzzy cauchy problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mathematical Research
سال: 2020
ISSN: 2227-4324
DOI: 10.14419/ijamr.v9i2.31118